THE IDENTIFICATION OF CULTIVATED PLANTS. III.
 CONFIRMATORY KEYS TO SOME WHEAT VARIETIES

Afaf A. Badawi (1), A. El-Gazzar ${ }^{(2)}$ and M.A. Allam (3)

INTRODUCTION

In a previous article (Badawi et al, 1978) one set of identificatory keys to a sample of 52 wheat varieties from 3 species (Triticum durum Desf., T. vulgare Vill. and $\mathrm{T}_{\text {. }}$ pyramidale Delile) has been given. These keys have been based on 26 characters recorded comparatively for each of the 52 varieties from gross vegetative morphology, features of the spikes and spikelets, kernel size and pollen diameter. However, the comparative recording of these characters enables the generation of numerous alternative keys to the same group of plants. Therefore, in this article we present another set of such keys in order that one set may be used in determining unknown wheat varieties while the other is used in the confirmation of that determination. The same idea has also been applied successfully to species and varieties of such economically important fiber-producing genera as Gossypium (El-Gazzar et al, 1975; Sallouma et al, 1975) and Linum (El-Gazzar et al, 1976; Momtaz et al, 1976), within the framework of a comprehensive project concerning the identification of cultivated plants.

Detailed descriptions of the 26 characters used as bases for the keys presented here, as well as their comparative scoring for each of the 52 wheat varieties represented in these keys will be found in Badawi et al (1978).

THE KEYS

For ease of manipulation the 52 wheat varieties have been divided into 6 smaller groups and a dichotomous nonindented key has been constructed for each group separately. The general policy adopted in the construction of these keys has previously been sketched (El-Gazzar, 1976). Furthermore, in order to save space in the keys, the full specific epithets have been replaced with the following

[^0]symbols: $D=$ Triticum durum Desf., V $=$ T. vulgare Vill., and $P=$. pyramidale Delile.

Key to groups I-VI

Group I (14 varieties)

1. Basal node not swollen 2 .
Basal node swollen 4.spike oblong, pollen diameter 85 u
2. Awn 12 cm long, toothed, spike drooping, stem 85 cm long, flag leaf 26 cm long, $87-v e i n e d$, glume peak 0.6 mm long Duker 7-D Awn 6.5 cm long, toothless, spike erect, stem 105 cm long, flag leaf 18 cm long, 46 -veined, glume peak 4 mm long

Mabrouk-V
4. Awn 6.5 cm long
5.

Awn at least twice as long
5. Awn dark-coloured, toothed, stem 90 cm
long with 3 internodes, pollen diameter 80 u. PM14-V
Awn white-yellow, toothless, stem 110 cm
long with 5 internodes, pollen 56 u
in diameter montana-V
6. Stem at least 110 cm long, terminal internode $20-23 \mathrm{~cm}$ long
7.

Stem $84-93 \mathrm{~cm}$ long, terminal internode 12-18 cm long
10.
7. Stem lodging, awn toothless 8.

Stem not lodging, awn toothed 9 .
8. Spike fusiform, curved, glume apex obtuse, flag leaf 46-veined

Duker 49-D
Spike oblong, erect, glume apex acute, flag leaf 59-veined

Duker 52-D
9. Stem white, spike oblong, lax, erect, kernel yellow, basal internode 9 cm long . Duker 13-D Stem purple, spike fusiform, dense, curved, kernel amber brown, basal
internode twice as long I64 skevart-D
10. Flag leaf with $56-60$ veins 1.

Flag leaf with 77-78 veins 13.
11. Stem white 12.

Stem purple Duker 10-D
12. Spike dense, terminal internode 12 cm
long, awn 18 cm long, glume apex 2 mm
long, flag leaf 34 cm long
Spike lax, terminal internode 17 cm
long, awn 14 cm long, glume apex 0.5 mm
long, flag leaf 29 cm long Duker 14-D
13. Kernel amber yellow, awn 12 cm long . . . Duker $12-D$

Kernel amber brown, awn 17 cm long Duker 15-D

Group II (9 varieties)

1. Stem not lodging, awn toothless, basal
internode 9-11 cm long 2 .
Stem lodging, awn toothed, basal internode $3.7-7.5 \mathrm{~cm}$ long 3 .
2. Spike oblong, lax, erect, stem 95 cm
long, flag leaf 50-veined, glumes 6.5×4
mm , pollen diameter 48 ugiorgiop-I -D
Spike fusiform, dense, curved, stem
70 cm long, flag leaf 71 -veined,
glumes $9 \times 3.1 \mathrm{~mm}$, pollen twice as large. . . inia 66-V
3. Spike oblong, flag leaf at least 28 cm
long
4.

Spike fusiform, flag leaf $18-2 \dot{1}$ cm long . . $\quad 5$.
4. Spike curved, glumes acuminate, awn
5.5 cm long

Spike erect, giumes acute, awn 8 cm iong. kushal $69-\mathrm{V}$
5. Basal internode 7.5 cm long, size of

100 kernels 26 cc
PM12-V
Basal internode $3.7-5 \mathrm{~cm}$ long, size
of 100 kernels 28-29 cc
6.
6. Awns dark, spike erect blue silver-V Awn white-yellow, spike drooping 7.
7. Kernel brown, glume apex acute, pollen 48 u in diameter

PM2R-V
Kernel amber yellow, glume apex acuminate, pollen diameter 64 u
8.
8. Stem purple, awn 6.5 cm iong, flag leaf $75-v$ eined
Stem white, awn 9 cm long, flag ieaf
50-veined
PM4-V
Group III (7 varieties)

1. Stem $64-90 \mathrm{~cm}$ long, terminal internode $13-14 \mathrm{~cm}$ long, basal internode $7-8 \mathrm{~cm}$ long.
Stem 104-157 cm long, terminal internode $19-26 \mathrm{~cm}$ long, basal one $11-17 \mathrm{~cm}$ long.
2.
3. Stem purple, awn toothless Bajio 67-V
4. Spike dense, drooping, kernel brown, awn 8.5 cm long, flag leaf 67 -veined

Duker 6-D Spike lax, erect, kernel yellow, awn 14 cm long, flag leaf 52 -veined Duker 9-D
4. Awn 6.5 cm long 5. Awn 11.5 cm long or more 6 .
5. Spike oblong, terminal internode 26 cm
long, flag leaf 71 -veined Africa mayo composite III-V Spike fusiform, terminal internode 19 cm long, flag leaf $46-\mathrm{veined}$. .Africa mayo composite IV-V
6. Stem purple, 157 cm long, spike oblong, awn toothed, kernel amber yellow, flag
leaf 31 cm long, 55-veined, glumes $9 \times 2 \mathrm{~mm}$. Duker 4-D Stem white, 115 cm long, spike fusiform, awn toothless, kernel amber brown, flag leaf 20 cm long, 38 -veined, glumes $6 \times 4 \mathrm{~mm}$. Duker 5-D

> Group IV (6 varieties)

1. Kernel brown 2. Kernel yellow or amber yellow 4.
2. Spike lax PM11-V Spike dense 3.
3. Spike oblong, curved, flag leaf 30 cm long, 50 -veined, glume apex 3 mm long. Spike fusiform, erect, flag leaf 37 cm long, 62-veined, glume apex twice as long. PM9-V
4. Stem white, 60 cm long, terminal internode 10.5 cm long, basal 5 cm long, spike fusiform, size of 100 kernels 27 cc . mag 54-V Stem purple, $95-100 \mathrm{~cm}$ long, terminal internode 16 cm long, basal at least 9 cm long, spike oblong, size of 100 kernels 29 cc 5.
5. Stem not lodging, awn toothed, $\dot{7} . \dot{5} \mathrm{~cm}$ long, glume apex 7 mm long Giza 150-V Stem lodging, awn toothless, twice as long, glume apex 0.5 mm long baladi 116-P

> Group V (3 varieties)

1. Spike dense, erect ••••••••••• Giza $145-V$ Spike lax, curved awn toothed, glume apex 5 mm long . . . Duker 3-D
2. Stem purple, 155 cm long, spike fusiform, Stem white, 115 cm long, spike oblong, awn toothless, glume apex 2 mm long
improved mokhtar-V

Group VI (13 varieties)

1. Stem white 2.
Stem purple 6.
2. Stem at least 170 cm long, with $6-7$
internodes, terminal $30-32 \mathrm{~cm}$ long,
basal $25-26 \mathrm{~cm}$ long3.
Stem 116-135 cm long, with 4-5 internodes, terminal $20-25 \mathrm{~cm}$ long, basal $11-16.5 \mathrm{~cm}$
long 4.
3. Flag leaf 65-veined arotha-D
Flag leaf 82-veined mindom-D
4. Stem lodging, awn 12 cm long, glumeapex 1 mm long
Stem not lodging, awn $17-20 \mathrm{~cm}$ long,glume apex 4-5 mm long5.
5. Awn toothed, kernel amber yellow, flag leaf 70 -veined, pollen diameter 56 u.Awn toothless, kernel brown, flagleaf 59-veined, pollen diameter 80 u.inia 156-V
6. Spike fusiform, stem 135 cm long,
terminal internode 25 cm long, basalleaf 78-veinedspelemer-D
Spike oblong, stem 160 cm long,
terminal internode more than 29 cm long,basal 23 cm long, awn 9 cm long, flagleaf 61-veinedkubanka-D
7. Spike dense, awn $7-10 \mathrm{~cm}$ long, flag leaf with 61-63 veins 9.
Spike lax, awn at least 11 cm long,
flag leaf with 71 veins or more. 11.
8. Awn toothed, stem 137 cm long, basal internode 17.5 cm long, spike curvedAwn toothless, stem $107-115 \mathrm{~cm}$ long,basal internode 9-10.5 cm long,spike erect10.
9. Stem with 5 internodes, flag leaf23 cm longGiza 144-V
Stem with 4 internodes, flag leaf30 cm longGiza 148-V
10. Spike oblong, glume apex obtuse,stem 139 cm longSpike fusiform, glume apex acuminate,stem 115-125 cm longDuker 8-D12.12. Spike curved, terminal internode 27cm long, basal 16 cm long, flag leaf38.5 cm longDuker 1-DSpike erect, terminal internode 16 cm ,basal 10 cm , flag leaf 26 cm longDuker 2-D

DISCUSSION

We have endeavoured to separate the two entries of each couplet in the keys using combinations of as many correlated characters as possible in order to give maximum contrast between them, thus facilitating the users' task of deciding to which of them an unknown wheat variety belongs. Nevertheless, in case the keys constructed so far may have not made the best possible use of the characters recorded comparatively for the plants, the datamatrix on which they are based (Appendix I in Badawi et al, 1978) should serve as a permanent record of the plants and their characters, enabling those interested in wheat identification to generate their own keys on the basis of the same set of characters. This data-matrix has the added merit of being easily expandable in one or both directions; i.e. it can accomodate more plants, more characters, or both, and as such it also serves as an information storage-retrieval system in which new plants can be pigeon-holed.

It can be observed from the keys that we have avoided some of the common pit-falls found in other keys. For instance, the characters or combinations of characters chosen to distinguish between the various division levels in the keys are such that each variety appears only once in these keys. One of the usual features of most keys to date is that a given taxon can be keyed out at more than one place in the same key. This is a result of diagnosing the various couplets including this taxon by characters represented by more than one state in its members. No such repetition will be found in our keys to wheat varities. Furthermore, ambiguous and unqualified character definition such as 'stem long / stem short' (without any idication of how long is long or how short is short), has been eliminated entirely from our procedures. Instead, actual measurements of the various parts of the plants have been recorded, and only those with the widest possible margin of difference have been used in the distinction between the two alternative entries of a given couplet.

REFERENCES

Badawi, A.A, El-Gazzar, A. and Allam, M.A. (1978). The identification of cultivated plants. II. The genus Triticum L. Phytologia, 38: 267-279.
El-Gazzar, A. (1976). The identification of cultivated plants. I. A general commentary on botanical identification. Phytologia, 34: 240-244.
El-Gazzar, A., Momtaz, A. and Gaafar, S. (1976). The identification of some flax introductions. Phytologia, 33: 467-473.
El-Gazzar, A., Sallouma, B.M. and Abdellah, M.E. (1975).

The identification of some cotton varieties. Phytologia, 31: 259-263.
Momtaz, A., El-Gazzar, A. and Gaafar, S. (1976). The use of anatomical properties of flax varieties in the confirmation of their identity. Phytologia, 33: 474-479.
Sallouma, B.M., El-Gazzar, A. and Abdellah, M.E. (1975). The use of technological properties of cotton varieties in the confirmation of their identity. Phytologia, 31: 264-266.

[^0]: (1) Botany Department, Faculty of Science, Ain Shams Univ.
 (2) The Herbarium, Faculty of Science, Cairo Univ., Giza.
 (3) Crops Research Institute, Ministry of Agriculture, Giza, Egypt.

